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ABSTRACT, Abdomens of male Mecolaesthus longissimus Simon 1 893 are on average more than twice

as long as in females, their length is highly variable, and they show extremely steep allometric values

when scaled on body size (OLS, b = 2.64). Males cohabit with females, and they likely fight to defend

this position as other pholcid spiders do. Male legs, which are usually used in pholcid male-male fights,

do not show the usual high allometric values but a very low value (OLS, b = 0.37). Collectively, this

lends support to the idea that M. longissimus males do not use their legs in fights and that male abdomens

have assumed a role in male-male fights. However, behavioral data are missing and sexual selection by

female choice or inter-male display might be involved. A large sample of data from taxonomic revisions

is used to document that across pholcids, males consistently have longer tibiae 1 (and probably legs in

general) than females. Several possible reasons have been suggested to account for longer male than

female legs in various spider groups, but the pattern in pholcids remains to be explained.
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Extreme sexual size dimorphism in spiders

has attracted considerable attention for a long

time and its evolutionary origin has fueled a

lively and ongoing debate (Vollrath & Parker

1992; Coddington et al. 1997; Head 1995;

Prenter et al. 1997, 1998, 1999; Hormiga et

al. 2000; Schneider et al. 2000; Moya-Larano
et al. 2002; Walker & Rypstra 2003). The
more common case of slight size dimorphism

and the rather exceptional case of males being

larger than females have remained compara-

tively out of the main focus of size dimor-

phism studies in spiders (but see Prenter et al.

1995, 2003; Toft 1989; Schiitz & Taborsky

2003). Different selective forces, both natural

and sexual, probably interact in many species,

but fecundity selection may be the single ma-
jor factor responsible for females usually be-

ing larger than males (Beck & Connor 1992;

Elgar 1992; Head 1995; Prenter et al. 1999).

However, simple size measures derived from
the taxonomic literature may result in an over-

ly simplistic view of dimorphism. Depending
on the structure measured, either males or fe-

males may appear to be the ‘larger’ sex, and

some or most dimorphism may be in shape

rather than in size (Prenter et al. 1995).

Few cases of males being larger than fe-

males are known in spiders (Prenter et al.

1999; Lang 2001) even though large male size

advantage has been documented in numerous

species (Vollrath 1980; Elgar & Nash 1988;

Nielsen & Toft 1990; Dodson & Beck 1993;

Kotiaho et al. 1997, 1999; Elgar 1998; Elgar

& Fahey 1996; Taylor et al. 2001; Prenter et

al. 2003; Schaefer & Uhl 2003). In most cases

in which males are larger than females, male-

male fights are intense, and winners of con-

tests sire a significant proportion of their

mate’s offspring (Rovner 1968; Watson 1990;

Elgar 1998). Selection is particularly strong

on the fighting structures per se (e.g., chelic-

erae in certain linyphiid and salticid spiders:

Rovner 1968; Toft 1989; Pollard 1994; Funke

& Huber In press) and such intense directional

selection usually results in high allometric

values (i.e. > 1.0; Petrie 1992; Green 1992;

Baker & Wilkinson 2001; Tatsuta et al. 2001;

Funke & Huber In press; see also Eberhard et

al. 1998; Eberhard 2002a, b). Natural selec-

tion may also result in males being the larger

sex, as in the exceptional case of the water

spider, Argyroneta aquatica (Clerck 1757). In

this species, males are on average nearly 30%
larger than females, as a result of the unusual

habitat (Schtitz & Taborsky 2003).

The presence and degree of sexual size di-

morphism within and among species can be
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Figures 1, 2.

—

Mecolaesthus longissimus, geni-

talic characters measured. 1. Bulb length (b) and

procursus length (p), dorsal view; 2. Epigynum
width (e), ventral view.

used to generate behavioral hypotheses that

can then be tested. In this study, I have two

main objectives: (1) to document and quantify

the apparently unique dimorphism observed in

the pholcid Mecolaesthus longissimus, and (2)

to use data from the literature to quantify leg

length dimorphism across pholcid species.

The main object of this study, Mecolaesthus

longissimus Simon 1893, is endemic to the

Cordillera de la Costa in northern Venezuela

(Huber 2000). Nothing is known about its bi-

ology except for some very basic habitat data

(Simon 1893; Huber 2000).

METHODS
Males and females of Mecolaesthus longis-

simus were collected in a forest above Colonia

Tovar (10°25'N, 67°18'W), 2100 m a.s.L, Ar-

agua, Venezuela, on 26 November 2002, by

the author. The present analysis is based on a

sample of 30 males and 14 females preserved

in 80% ethanol. They are presently deposited

at the Zoological Research Institute and Mu-
seum Alexander Koenig, Bonn, but will later

be partly transferred to the Museo de La Salle,

Caracas. Drawings were made with a camera
lucida on a Leitz Dialux 20 compound micro-

scope. Photos were made with a Nikon Cool-

pix 995 digital camera (1600 X 1200 pixels)

mounted on a Nikon SMZ1500 dissecting mi-

croscope.

Measurements were made with an ocular

grid on a Nikon SMZ1500 dissecting micro-

scope. Tibia length was measured dorsally;

carapace length was measured medially from
anterior median eyes to posterior border; ab-

domen length was measured ventrally from

frontal end to base of frontal spinnerets; an-

terior and posterior parts were divided by the

epigastric furrow, resulting in two measures;

for genitalic measures see Figs, 1 and 2. Gen-

italia were included in the analysis to support

the assumption that all specimens included are

indeed the same species. Statistical analysis

was done with SPSS 11.0. Ordinary least

squares (OLS) and reduced major axis (RMA)
regressions of log-transformed characters

were calculated for all traits on carapace

length as an indicator of body size (for cri-

tique and justification of method see Green

1999 and Eberhard et al. 1999). Carapace

length was used rather than carapace width i

(the usual indicator of body size in spiders)

because lateral carapace borders appeared too

soft and indistinct.

For comparison of male and female tibia 1

lengths in pholcid spiders, data were taken

from recent revisions (Huber 1997a, b, c,

1998a, b, 2000, 2001, 2003a, b, c; Huber &
Perez 1998, 2001; Huber et al. In press; B.A.

Huber unpubl. data). In order to be included

in the analysis, the species (re)description had

to give a mean value of at least five measured

tibiae 1 in each sex. All together, 2673 tibia

1 measures of 100 species (20 of them un-

published) were included, representing 28

genera and all four pholcid subfamily-level

taxa. The complete data matrix is available

from the author.

RESULTS

Morphometric analysis of Mecolaesthus

longissimus .—Three details are noteworthy in

the morphometric analysis (Table 1). First,

male abdomens are on average more than

twice as long as female abdomens (see also

Figs. 4, 8, 9). Second, male abdomens are ex-

tremely variable (see also Figs. 5-7 & 9).

Third, it is the anterior part of the male ab-

domen that accounts for most of the variation

in male abdomen length. In females, to the
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Figures 3-8. —Mecolaesthus longissimus. 3. Male (left) and female in the web (photo courtesy B.

Striffler); 4. Large male, dorsal view; 5-7. Large, medium, and small male abdomens, ventral views; 8.

Medium size female. Figs. 4-8 are to the same scale.

contrary, it is the posterior part of the abdo-

men that is much more variable than the an-

terior part.

No appreciable shape variation was seen in

the structures usually used in species discrim-

ination in pholcids (male procursus, bulbal

sclerites, cheliceral armature). The regression

coefficients of the three genitalic structures

measured were low as is usual for genitalia

(Eberhard et al. 1998). Surprisingly low re-

gression values were also found for male (but

not female) legs.

Comparative analysis of pholcid tibiae

1 .—There is a consistent trend for males to

have longer tibiae 1 than females when 100

species were compared (Fig. 10). The mean
ratio of male/ female tibia 1 is 1.28, the me-
dian 1.27 (Fig. 11). Strictly speaking, species

are linked by phylogeny and not independent

data points (Harvey & Pagel 1991). However,
my aim here is to document a universal trend

within the family and not to claim that there

are independent events that might justify some
adaptive explanation. Regardless of the details

of the phylogeny of pholcids, parsimony

clearly suggests that ancestral pholcids had
longer male than female legs.

DISCUSSION

The extremely high allometric value of

male abdomen length in M. longissimus in-

dicates that directional selection is operating

on this body part. Structures used as weapons

in male-male fights or as visual display char-

acters in the context of sexual selection tend

to show high allometric values (Petrie 1992;

Green 1992; Baker & Wilkinson 2001; Tatsuta

et al. 2001; Funke & Huber In press; see also

Eberhard et al. 1998; Eberhard 2002a, b). The
exact nature of this selection cannot be de-

rived from allometric values alone but only by

behavioral observations and experiments.

However, circumstantial evidence suggests

that males might use their abdomens in a most

unusual and unexpected way: as display or

even fighting devices.

First, male-female postinsemination non-

contact guarding (sensu Alcock 1994) is rare

in spiders (Elgar 1998) but common in phol-

cids (Eberhard & Briceno 1985; Raster & Ja-

kob 1997; pers. obs.). For example, during a

monthly survey of a population of Modisimus

guatuso Huber 1998 in Costa Rica from No-
vember 1995-September 1997, I counted 398

pairs involving adult males and adult females,

not a single pair involving a juvenile female,

and 65% of 596 males seen were cohabiting

(unpub. data). During several collecting ex-

peditions I have become used to the expecta-

tion that seeing one adult pholcid often means

that another one of the opposite sex is nearby.

Most webs at the collection site of the present

species contained a male and a mature female.
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Table 1 . —Mecolaesthus longissimus, male and female characters measured (in mm), with sample sizes

(n), ranges, means, standard deviations (SD), coefficients of variation, corrected for sample size (CV*),

significance values of Kolmogorov-Smirnov tests for normal distribution (KS), estimates on measurement
error (± 1/2 unit on the measuring grid), and slopes (b) of regressions on carapace length as an indicator

of body size, using ordinary least squares (OLS) and reduced major axis (RMA) regression. Slopes sig-

nificantly different from 0 are indicated by *(P < 0.05), **(P < 0.01), and ***(P < 0.001). RMA
regressions were not calculated when OLS values were non-significant.

Characters n Range Mean SD CV* KS

Measure-

ment

error

(± mm)
b

(OLS)
b

(RMA)

Males

tibia 1 length 30 10.53-12.80 11.59 0.54 4.7 0.57 0.07 0.37*** 0.57

tibia 3 length 30 5.15-6.40 5.78 0.31 5.3 0.69 0.05 Q 49*** 0.66

abdomen total length 30 2.90-6.50 4.85 1.21 25.1 0.33 0.07 2.64*** 3.14

abdomen frontal part 30 1.15-3.80 2.42 0.90 37.5 0.32 0.03 3 72*** 4.67

abdomen post, part 30 1.75-2.95 2.44 0.36 15.1 0.75 0.07 1.60*** 1.93

carapace length 30 0.90-1.22 1.09 0.088 8.2 0.84 0.01 — —
bulb length 30 0.35-0.38 0.36 0.009 2.4 0.10 0.005 Q 2j*** 0.29

procursus length 30 0.39-0.43 0.41 0.012 2.9 0.16 0.005 0 23*** 0.35

Females

tibia 1 length 10 6.55-8.10 7.38 0.46 6.4 0.71 0.07 1,91** 2.37

tibia 3 length 14 3.05-3.78 3.51 0.21 6.1 0.71 0.03 1.39** 2.11

abdomen total length 14 2.00-2.70 2.34 0.18 7.9 1.00 0.02 1.07 n.s. —
abdomen frontal part 14 0.82-0.92 0.88 0.031 3.6 0.52 0.02 0.45 n.s. —
abdomen post, part 14 1.17-1.80 1.46 0.17 11.6 1.00 0.02 1.43 n.s. —
carapace length 14 0.80-0.90 0.85 0.026 3.1 0.78 0.01 — —
epigynum width 14 0.34-0.39 0.36 0.013 3.6 0.90 0.005 0.37 n.s. —

(The reason that many more males were col-

lected is simply that I always collected the

males first in order to maximize the male sam-

ple, and females often dropped out of the web
before I could capture them.) Pholcus phal-

angioides (Fuesslin 1775), the pholcid species
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Figure 9 .—Mecolaesthus longissimus, scatter of

male and female abdomen lengths on tibia 3

lengths.

studied in most detail, is apparently unusual

in this regard as there is no evidence for mate

guarding (Uhl 1998).

Fights have been observed in pholcids

(Eberhard 1992; Eberhard & Briceno 1985),

and it is probable that males gain something

by cohabiting with or guarding females and

that they will fight to defend whatever re-

source there is. The exact benefit males derive

from staying with females is unknown. They

might protect their sperm investment from

competition with rival male ejaculates, be-

cause in pholcids the second males may fer-

tilize a large proportion of eggs (Eberhard et

al. 1993; Kaster & Jakob 1997; Yoward 1998;

Schafer & Uhl 2002). They might improve fe-

male foraging efficiency, but chivalrous be-

havior in pholcids might rather be a means to

induce the female not to leave and thus make

her defensible (Eberhard & Briceno 1983).

They might aid the female to repel other mo-

tivated males (Parker 1970). Finally, they

might provide postinsemination signals to in-

crease their chances of fathering their mate’s
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Figures 10, 11. —Tibia 1 length dimorphism in Pholcidae. 10. Scatter of log-transformed male tibia 1

lengths on female tibia 1 lengths for 100 pholcid species. The line indicates monomorphism; 11. Histogram

showing the ratio of male/female tibia 1 lengths in 100 pholcid species.

offspring (Eberhard 1985; Alcock 1994).

Whatever the details, male M. longissimus

probably fight intruders, or try to expel resi-

dents.

Second, exaggerated morphologies and

high variability of sexually dimorphic char-

acters often seem to result from sexual selec-

tion (Pomiankowski & Mpller 1995; Baker &
Wilkinson 2001). For example, extreme male

size variation in the salticid Zygoballus rufipes

Peckham & Peckham 1885 was attributed to

alternative male mating strategies (Faber

1994). Comparative evidence strongly sug-

gests that female M. longissimus have retained

the plesiomorphic abdomen size, and that

males vary from ‘normal’ to extreme. All oth-

er known species of Mecolaesthus have ‘nor-

mal’ abdomens, not appreciably different

from the abdomens of females and of other

closely related genera (Huber 2000). Thus,

male M. longissimus abdomens are exagger-

ated sexual modifications.

Third, there is no evidence pointing to eco-

logical determinants of male abdomen size.

The webs in which the specimens were col-

lected appear identical to those of many New
World pholcids, i.e. a distinct, loosely meshed
and more or less domed sheet (Eberhard &
Briceno 1985). Further observations on ecol-

ogy are not available.

Thus, sexual selection on male abdomen
size appears as the most plausible explanation

for the dimorphism in this species. Female
choice might be involved, and a large abdo-

men may be a costly and thus honest indicator

of male quality (cf. Uetz et al. 2002). Alter-

natively, cryptic female choice might select

for exaggerated male testes or accessory gen-

ital glands (cf. Eberhard 1996). However, nu-

merous studies indicate that male-male fights

are the most important force selecting for

large male size (Christenson & Goist 1979;

Watson 1990, 1991; review in Andersson

1994). Therefore, I hypothesize that male M.

longissimus use their abdomens either to fight

or to assess each other before fights. A large

brown spot ventrally on the abdomen (Figs.

5-7) might be significant in this respect: the

spot marks the posterior border of the anterior

part of the abdomen, i.e. that part that is most

extremely size dimorphic, has the highest re-

gression coefficient, and is therefore the most

reliable predictor of male size (cf. Taylor et

al. 2000). Male M. longissimus carry their ab-

domen more or less vertically (Fig. 3; see also

fig. 439 in Simon 1893), making the spot po-

tentially visible to conspecifics in the same
web. Whether pholcids have the appropriate

visual capabilities is unknown.

A surprising but revealing result is the low

regression value of male (but not female) tibia

1 (b[OLS] = 0.37) in M. longissimus. It is

consistently higher in other pholcids studied:

0.88 in Metagonia mariguitarensis (Gonzalez-

Sponga 1998) (Huber 2004), 1.00 in Buitinga

safura Huber 2003 (Huber & Hopf 2004),

1.22 in Physocyclus globosus (Taczanowski

1874) (Eberhard et al. 1998). This would seem
to indicate stabilizing selection in M. longis-

simus, in contrast to other pholcids. I hypoth-
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esize that the unusual regression value of male

leg length and the unusual exaggerated ab-

domen are directly correlated and that M. lon-

gissimus males have changed from leg fights

(the usual strategy in pholcids: Eberhard

1992; Eberhard & Briceno 1985) to abdomen
fights, thus relaxing selection on leg length.

However, this still requires an explanation for

longer legs in M. longissimus males than in

females. One potential explanation is phylo-

genetic inertia, as nearly all pholcids have lon-

ger male than female legs (see below).

The tibia 1 measures across the entire fam-

ily clearly show that male pholcids have con-

sistently longer tibiae than females. Unfortu-

nately, there are no comparable data on other

size measures, as for example total body size.

However, the reason for this missing data is

that male and female pholcids usually are

monomorphic regarding total size (Elgar

1992; pers. obs.). Collectively, this lends fur-

ther support to the idea that single size mea-
sures may not reliably reflect sexual size di-

morphism in spiders (Prenter et al. 1995). The
reasons for leg length dimorphism in pholcids

are unknown. Longer legs may help cursorial

males in their search for females (Montgom-
ery 1910), they may provide males with a

wide sensory radius and keep them relatively

safe from female aggression (Elgar et al.

1990), or they may play a role in male-male

fights (Eberhard 1992; Dodson & Beck 1993;

Eberhard & Briceno 1985; Prenter et al. 1995;

Bridge et al. 2000). Whatever the details, the

consistent and fairly uniform pattern argues

for a widely responsible cause or set of causes

rather than for varying explanations in differ-

ent taxa.
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